
RoundTripRank: Graph-based Proximity
with Importance and Specificity∗

Yuan Fang #$, Kevin Chen-Chuan Chang #$, Hady W. Lauw +

fang2@illinois.edu, kcchang@illinois.edu, hadywlauw@smu.edu.sg

University of Illinois at Urbana-Champaign, 201 N. Goodwin Avenue, Urbana, IL 61801, USA
$ Advanced Digital Sciences Center, 1 Fusionopolis Way, #08-10 Connexis N. Tower, Singapore 138632

+ Singapore Management University, 80 Stamford Road, Singapore 178902

Abstract—Graph-based proximity has many applications with
different ranking needs. However, most previous works only
stress the sense of importance by finding “popular” results for a
query. Often times important results are overly general without
being well-tailored to the query, lacking a sense of specificity—
which only emerges recently. Even then, the two senses are
treated independently, and only combined empirically. In this
paper, we generalize the well-studied importance-based random
walk into a round trip and develop RoundTripRank, seamlessly
integrating specificity and importance in one coherent process.
We also recognize the need for a flexible trade-off between
the two senses, and further develop RoundTripRank+ based on
a scheme of hybrid random surfers. For efficient computation,
we start with a basic model that decomposes RoundTripRank
into smaller units. For each unit, we apply a novel two-stage
bounds updating framework, enabling an online top-K algorithm
2SBound. Finally, our experiments show that RoundTripRank
and RoundTripRank+ are robust over various ranking tasks,
and 2SBound enables scalable online processing.

I. INTRODUCTION

Graphs are abundant in the real world, such as a biblio-
graphic network connecting authors, papers, terms and venues,
and a query log graph linking search phrases and their clicked
URLs. In this work, we study the problem of ranking nodes
on a graph by their “proximity” to a given query. Consider
a graph G = (V,E) with nodes V and edges E. Edges are
directed and possibly weighted, where an undirected edge is
treated as bidirectional. As each edge embeds certain semantic
relationship, through these edges the proximity of two nodes
can be quantified, reflecting a degree of match between the
two nodes. Thus, given a query node q ∈ V , how to measure
the proximity of every node v ∈ V to q? More generally, a
query can comprise multiple nodes on the graph.

We motivate graph-based proximity with some examples
below, which illustrate quite varying ranking tasks (of different
natures, as we will see) even on the same graph.
• Task A (Expert): on a bibliographic network, given a paper,

who are the experts best suited to review it?

∗ This material is based upon work partially supported by NSF Grant IIS
1018723, the Advanced Digital Sciences Center of the University of Illinois
at Urbana-Champaign, and the Agency for Science, Technology and Research
of Singapore. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

(a) Importance-based (b) Specificity-based (c) balanced
SIGMOD Spatio-Temporal Databases VLDB

VLDB Spatio-Temporal Data Mining Spatio-Temporal Databases
ICDE Temporal Aspects in Info. Sys. ACM GIS

Fig. 1. Venues for “spatio temporal data” (real results from Sect. VI).

• Task B (Venue): on a bibliographic network, given some
terms as a topic, what are the matching venues?

• Task C (Relevant URL): on a query log graph, given a search
phrase, what are the relevant URLs?

• Task D (Equivalent search): on a query log graph, given a
search phrase, what are the equivalent phrases for the same
concept (e.g., “google mail” and “gmail”)?
Taking Task B as an example, given a query, say q = “spatio

temporal data” (comprising three term nodes), what are the
matching venues? One effective family of works build upon
random walks on the graph, such as Personalized PageRank
(PPR) [1], [2] and its variants [3], [4], which find venues
that can be easily reached from q through the edges. Fig. 1(a)
shows venues found by PPR in our actual experiments—they
are well-known venues like VLDB where the topic in q appears.
As pioneered by PPR, ranking nodes by their reachability from
the query intuitively captures the sense of importance.

However, such importance-based ranking is not ideal in
many cases, as a node can be easily reached from q simply due
to its popularity for being linked from a broad range of nodes,
without being particularly tailored to q. As we re-examine
Fig.1(a), the venues are only categorically related to our query
as general data-centric topics. In fact, the same venues would
be ranked as important for almost any data-centric topic, e.g.,
“information integration.” How about those venues especially
tailored to the query, as Fig. 1(b) shows?

Thus, we argue that the sense of specificity is missing, as the
results in Fig. 1(a) are important, but not specific, to the query.
As a key insight, proximity shall naturally encompass the dual
senses of importance and specificity. A balanced ranking in
the two senses is often more useful, such as Fig. 1(c). Among
the venues, VLDB is important, Spatio-Temporal Databases is
specific, and the previously undiscovered ACM GIS is balanced
between the two senses.

Although intuitive and appealing, dual-sensed graph prox-
imity with both importance and specificity is not explored until
recently by Hristidis et al [5]. Their work hypothesizes various

forms of specificity, such as the inverse of node degree, the
inverse of global ObjectRank [3], and Inverse ObjectRank [5]
(which is ObjectRank on the graph with reversed edges). Each
form of specificity is then combined with the reachability-
based importance in different ways. While a novel insight,
their approach suffers from two fundamental drawbacks.

First, they treat the two senses independently and combine
them heuristically, lacking a unifying model to coherently
capture both. As they model specificity upon quite disparate
concepts, there is no definitive view on the best form. More-
over, it is unclear which way of combination with importance
is superior. In particular, the form of specificity (e.g., inverse
of node degree [5]) can inherently differ from the reachability-
based importance, and thus their combination appears ad-hoc.
Our experiments also reveal that, even empirically, they tend
to perform unevenly on different ranking tasks.

Second, they pursue a fixed trade-off between importance
and specificity, while many applications require flexible trade-
offs, as different users or ranking tasks often involve different
objectives. Let us revisit the example tasks given earlier.
• Task A (Expert): Reviewers balanced between importance

and specificity are preferred. An important but broad expert
may miss some latest development, while a very specific
researcher like a student may lack authoritativeness.

• Task B (Venue): Different scenarios require varying senses.
For instance, to build some background on a topic, a specific
book chapter may be preferred. In contrast, to submit one’s
best work, important venues are often sought after.

• Task C (Relevant URL): Users often prefer important URLs
for monetary transactions, such as booking a hotel.

• Task D (Equivalent search): Equivalent phrases are inher-
ently specific, as they ideally represent the same concept.
As our experiments validated, it is rare to involve only

a single sense in a task. The above tasks actually require
some trade-off between the two senses, e.g., Task C values
importance, but it still needs some specificity—when booking
a hotel, an important “travel” site is expected. However, what
sense weighs more varies across tasks as we have analyzed.
We note that the benefit of a flexible trade-off has not been
recognized in previous works, and thus they miss the potential
to improve ranking by catering to different objectives.

Thus, as our main thesis, we believe that an effective dual-
sensed graph proximity measure must entail:
• Unified modeling. Instead of combining the independent

forms of importance and specificity, the dual senses must
be seamlessly integrated under a single unifying process—
coherently based on the same random walk principle as the
well-studied importance-based ranking.

• Customizable trade-off. Instead of a “one-size-fits-all”
solution, the trade-off between importance and specificity
must be flexible—the unified modeling shall also allow for
customizable trade-offs between the dual senses.
Towards a unified modeling, as the first contribution

(Sect. III), we propose RoundTripRank to integrate the dual

�� = spatio

�� = transaction

��, … , ��: papers with different terms

�� = VLDB

�� = ACM GIS

�	 = Spatio-Temporal Databases

(query term node)

(non-query term node)

�	��

��
��

��

�
��

��

�	

��

��

��

Fig. 2. A toy graph for a bibliographic network.

senses of importance and specificity in a round trip. Given a
node q as the query, a round trip w.r.t. a target node v starts
from q, goes through v, and finally returns to q. As we believe
importance and specificity naturally exist in symmetric forms,
this round trip generalizes the reachability-based importance,
capturing not only the reachability from the query (to the
target) as importance, but also the reachability to the query
(from the target) as specificity.

As an example, let us rank venues v1, v2, v3 on Fig. 2 for
query q = t1. v1 is intuitively more important than v3, as v1

has two papers p1, p2 on t1, but v3 has only one p5. Observe
that from t1 it is easier to reach v1 than v3. However, v1 is
less specific than v3, as v1 accepts two off-topic papers p6, p7,
but v3 does not. Observe that it is easier to return to t1 from
v3 than from v1. Thus, a round trip—from t1, through a target
venue vi, and back to t1—integrates both senses, favoring v2

for being not only important (with two papers p3, p4 about t1),
but also specific (without off-topic papers).

Next, towards a customizable trade-off, as the second con-
tribution (Sect. IV), we make a further generalization and
develop RoundTripRank+ based on a novel scheme of hybrid
random surfers. We consider random surfers of different
minds who may “shortcut” different parts of the round trip to
reflect their preference—some prefer importance, some prefer
specificity, and others prefer a balance. In particular, we use
different compositions of hybrid random surfers to mimic the
varying objectives in importance and specificity.

A potential drawback of RoundTripRank is its computa-
tional overhead. Each “outgoing trip” from a query node
to every target node can be conceptually paired with many
different “returning trips” to complete a round trip, causing an
exponential blow-up to the possible round trips. Fortunately,
we are able to decompose RoundTripRank into smaller units,
where each unit can be computed without actually considering
the large number of round trips. Moreover, since users are
often interested in getting a small number of top results
quickly, as the third contribution (Sect. V), we introduce a
top-K algorithm called 2SBound, building upon our decompo-
sition of RoundTripRank as well as a novel two-stage bounds
updating framework. To handle very large graphs, we further
adapt 2SBound to a distributed environment.

Finally, as the fourth contribution (Sect. VI), we conduct
extensive experiments on two real-world graphs. In terms
of effectiveness, we consistently and significantly outperform
existing baselines over varying ranking tasks. On average,
RoundTripRank improves over existing mono-sensed mea-
sures by 10%, and RoundTripRank+ improves over existing
dual-sensed measures by 7%. For efficiency, 2SBound is 2–10
times faster than various baseline solutions.

II. RELATED WORK

Importance and specificity. While the sense of importance
to a query has been studied since PPR [1], [2], the sense of
specificity is only recently explored [5] with a few heuristic
forms such as the inverse of node degree, the inverse of
global ObjectRank [3], and Inverse ObjectRank. We pursue
a different approach by generalizing the importance-based
random walk to a round trip, which coherently captures both
importance and specificity in a single measure.

Mono-sensed proximity. Most existing graph-based proximity
measures are mono-sensed, matching the query in only one
sense—importance, specificity, or simply a vague sense of
“closeness” without a finer interpretation. Examples include
(a) importance: PPR [1], [2] and its variants [3], [4], [6]; (b)
specificity: backward random walk [6] and Inverse ObjectRank
[5]; (c) no finer interpretation: AdamicAdar [7], SimRank [8]
and escape probability [9], [10]. As Sect. I motivated, they are
inadequate since most tasks require some trade-off between
importance and specificity.

Dual-sensed proximity. Some recent works, such as truncated
commute time [11], the harmonic mean of “precision” and
“recall” [12], [13], and ObjSqrtInv [5], can be deemed dual-
sensed measures. We first note that none of them, except [5],
connects explicitly to importance and specificity. While [11]
does not argue any finer interpretation, [12] and [13] mea-
sure probabilistic precision and recall. Unlike importance and
specificity which are directly defined on a query, precision and
recall are indirectly measured against an underlying “relevant
set” of nodes for a query. Despite the contrast, precision and
recall seem to intuitively parallel specificity and importance,
which may warrant further investigation. Second, most works
[12], [13], [5] heuristically combine the two senses as two
independent measures, lacking an underpinning model to unify
them coherently. We instead develop a round trip to directly
entail both senses in a single measure. Third, all of them ignore
different trade-offs between importance and specificity across
tasks. In contrast, our round trip model can be generalized to
mimic the varying trade-offs using a scheme of hybrid random
surfers, allowing for a customizable trade-off.

Efficient query processing. We also study online top-K
processing for RoundTripRank. While we adopt a branch-and-
bound graph expansion algorithm [14] as the backbone, signif-
icant innovations are still required to realize it, which include
our original bounds decomposition, two-stage framework for
bounds updating, and a cluster-based distributed architecture
for scaling up. Our realization not only enables online search,
but also requires no precomputation, unlike many previous
graph proximity works [2], [3], [15], [16].

III. ROUNDTRIPRANK: WALKING IN ROUND TRIPS

In this section, we develop RoundTripRank to integrate
importance and specificity in a coherent round trip, followed
by a basic computational model.

A. RoundTripRank: Balancing Importance and Specificity

Towards a dual-sensed measure, we generalize PPR [1], [2]
for its effectiveness in measuring importance. The general-
ization would capture both importance and specificity in a
coherent random walk, instead of treating them independently
and combining them heuristically.
Personalized PageRank (PPR). To prepare the generaliza-
tion, we first review PPR [1], [2] as an effective measure
of importance. On a graph G = (V,E), a random surfer is
initially at a given query node q ∈ V . (We ignore multi-node
queries for now.) At each step, she has a probability 1−α to
move to a neighbor randomly, and a probability α to teleport
to q. Her stationary probability at node v is v’s PPR for q,
denoted PPR(q, v), indicating v’s importance to q.
Trip-view of PPR. To generalize PPR, we need an alternative
view with the notions of a “trip” and a “target.” Let L be
a random variable (of some distribution). Starting from q, the
surfer takes L random steps on the graph. She then teleports to
q to restart the walk. This L-step walk is a trip from q, reaching
v as the target. We call the probability that v is the target of a
trip from q the F-Rank of v for q (rank by reachability from
query), denoted f(q, v). Representing a trip as a sequence of
visited nodes W0, . . . ,WL, we have:

f(q, v) , p(WL = v|W0 = q). (1)

The walk length L captures the range of influence from the
starting node—how far the surfer can walk until the influence
becomes too weak and requires a restart. In particular, if L
is geometric with parameter α ∈ (0, 1), i.e., p(L = `) =
(1− α)`α, F-Rank is equivalent to PPR.

Proposition 1 (From Fogaras et al. [17]): For a query node
q, a node v’s PPR with teleporting probability α equals its
F-Rank with walk length L∼Geo(α):

f(q, v) ≡ PPR(q, v). (2)

In general, a geometric L is effective as it gives longer
walk lengths smaller probabilities, agreeing with the intuition
that the influence from a node weakens along a path. Unless
otherwise stated, we will assume a geometric L for F-Rank,
which captures importance just as PPR does.
Our proposal: from importance to specificity. F-Rank treats
importance as reachability from q in the L steps before
teleportation. We can interpret this notion of importance by
viewing a directed edge a→b as “a cites b.” Note that, more
generally, depending on the context a cites b may mean a
(paper) mentions b (term), or a (venue) accepts b (paper), or a
(paper) supports b (venue), etc. Naturally, if a node v is more
important to q than another node v′ is, q is more likely to cite v
than v′, directly or indirectly. In other words, the more likely v
can be reached from q via a directed path, the more important
v is to q. As an example, in Fig. 2 where q = t1, observe that
v1 or v2 (each with two papers about t1) is intuitively more
important to t1 than v3 (with only one such paper). Indeed,
from q it is easier to reach v1 or v2 than v3.

(i) How important?

Reaching � from �.

(ii) How specific?

Returning to � from �.

(i)

(ii)

(ii)

(i)

Fig. 3. Illustration of round trips. A dotted line indicates a random walk
path that may pass through other nodes not shown here.

Interestingly, the citation analogy enables us to treat speci-
ficity in a symmetric form to importance. Imagine two nodes
v and v′, where v is more specific to q than v′ is. Naturally,
v tends to cite a focused set of nodes which are particularly
tailored to q, whereas v′ tends to cite a diverse set of nodes
which may not match q at all. Hence, q is more likely to be
cited by v than by v′, directly or indirectly. In other words,
the more likely q can be reached from v via a directed path,
the more specific v is to q. In Fig. 2 where q = t1, v2 or
v3 (accepting no off-topic papers) is intuitively more specific
than v1 (accepting two such papers). Observe that it is more
likely to reach t1 from v2 or v3 than from v1.

As we will see next, the importance-based random walk for
F-Rank does leave room to encompass the symmetric view of
specificity, unifying both senses in one coherent model.
RoundTripRank. To integrate specificity, we analyze the
formulation of F-Rank. The surfer not only reaches some
target v from q in L steps, but also returns to q from v
by teleportation (to restart the walk). We can thus view this
process, at least conceptually, as a round trip from q to v, then
back to q. However, the surfer goes back to q from v via a
trivial teleportation. Suppose that, instead of teleporting to q,
the random surfer takes an actual walk back to q in L′ steps.
The more likely to return to q from v, the more specific v is to
q. Hence, the materialization into an actual walk embeds the
sense of specificity into these additional L′ steps, symmetric
to importance embedded in the first L steps.

Thus, we consider a round trip starting and ending at q,
through v, as depicted in Fig. 3. Intuitively, if v is important
to q, the surfer will easily reach v from q in L steps; once at
v, if v is specific to q, the surfer will easily return to q in L′

steps. By finding out how likely a round trip goes through v,
we capture both senses in one coherent random walk.

As another degenerated case symmetric to F-Rank, we can
make the first L steps a trivial teleportation instead of an actual
walk. We will further exploit it to enable a customized trade-
off between importance and specificity in Sect. IV.

Now we formally introduce the round trip concept, upon
which RoundTripRank can be defined.

Definition 1 (Round Trip): A round trip is a random walk of
L+L′ steps starting and ending at the same node, i.e., W0 =
WL+L′ (L,L′ are i.i.d. geometric random variables). The node
after the first L steps, WL, is the target of the round trip.

Definition 2 (RoundTripRank): RoundTripRank of a node v
for a query node q, denoted r(q, v), is defined as: given that
a random surfer starting at q completes a round trip, the
probability that this round trip has the target v.

r(q, v) , p(WL = v|W0 = WL+L′ ,W0 = q) (3)

Target v Round trip from t1 Probability RoundTripRank r(t1, v)

v1

t1→p1→v1→p1→t1 0.0125

∝ 0.0125× 4 = 0.05
t1→p1→v1→p2→t1 0.0125

t1→p2→v1→p1→t1 0.0125

t1→p2→v1→p2→t1 0.0125

v2

t1→p3→v2→p3→t1 0.025

∝ 0.025× 4 = 0.1
t1→p3→v2→p4→t1 0.025

t1→p4→v2→p3→t1 0.025

t1→p4→v2→p4→t1 0.025

v3 t1→p5→v3→p5→t1 0.05 ∝ 0.05

t1
t1→p1→t1→p1→t1 0.01 ∝ 0.01× 25 = 0.25
24 more . . . 0.01 each

others none 0 0

Fig. 4. RoundTripRank for the toy example with constant L = L′ = 2.

More generally, a query can consist of multiple nodes, and
the round trip can start from any of them. Similar to the
Linearity Theorem [2] for PPR, RoundTripRank for a multi-
node query can be equivalently expressed as a linear function
of RoundTripRank for each node in the query. Hence, the rest
of our discussion only considers single-node queries.
Toy example. To illustrate RoundTripRank, we revisit the toy
graph in Fig. 2. For simplicity, we assume a constant walk
length L = L′ = 2, and equal weights for all edges. Applying
Bayes’ law to Eq. 3, RoundTripRank of each target v for the
query node t1 can be computed as follows:

r(t1, v) =
p(W0 = WL+L′ ,W0 = t1,WL = v)

p(W0 = WL+L′ ,W0 = t1)

∝ p(W0 = WL+L′ ,W0 = t1,WL = v) (4)

where the denominator is v-independent and thus does not
affect ranking (“∝” stands for equivalence in ranking).

The detailed computation is shown in Fig. 4. We list
all round trips starting at t1, grouped by their targets. The
probability of a round trip can be found using node degrees,
e.g., p(t1→p1→v1→p1→t1) = 1

5 ·
1
2 ·

1
4 ·

1
2 = 0.0125.

To see the intuition, let us compare v1, v2, v3. As discussed
earlier, v2 is as important as but more specific than v1, and
v2 is as specific as but more important than v3. Hence, v2 has
larger RoundTripRank than v1 and v3 for being both important
and specific. Also note t1 itself has the largest RoundTripRank,
which is intuitive that self-proximity is high.

B. Basic Computational Model For RoundTripRank

In Fig. 4, we compute RoundTripRank by summing the
round trips for each target. However, the number of such round
trips increases exponentially on larger graphs, calling for a
more practical computational model.

To begin with, we examine how PPR/F-Rank can be com-
puted. One simple method applies iterative computation [1],
which is linear in the number of nodes and edges:
f (i+1)(q, v) = αI(q, v) + (1− α)

∑
v′∈In(v)

Mv′vf
(i)(q, v′), (5)

where I(q, v) = 1 if q = v, or 0 if q 6= v; In(v) is the set
of v’s in-neighbors; Mv′v is the one-step transition probability
from v′ to v; α is the teleporting probability. Convergence is
guaranteed on an irreducible and aperiodic graph [18].

Thus, we wonder if RoundTripRank can also be computed
iteratively. Simply put, iterative computation is possible for F-
Rank as it can be defined recursively using its in-neighbors—to

reach a node v from q, the surfer must first reach one of v’s
in-neighbors v′. In other words, as the target v is at an “end”
of a walk, we can reduce the walk by one step to utilize the F-
Rank of v′. However, in RoundTripRank, a round trip merely
passes through v which is not at an “end” of the walk, and
thus no apparent iterative computation exists.

Consequently, we resort to divide and conquer. Can we
decouple a round trip into smaller units with the target at the
“end” of each unit, such that we can iteratively compute each?
It turns out we can rewrite RoundTripRank defined in Eq. 3
into an equivalent form with two decoupled units.

Proposition 2: The RoundTripRank of v for a query node q
can be expressed as follows with rank equivalence:

r(q, v) ∝ p(WL = v|W0 = q)p(WL′ = q|W0 = v) (6)

PROOF:

r(q, v)
1
= p(WL = v,W0 = WL+L′ |W0 = q)/p(W0 = WL+L′ |W0 = q)

2∝ p(WL = v,WL+L′ = q|W0 = q)

3
= p(WL+L′ = q|WL = v,W0 = q)p(WL = v|W0 = q)

4
= p(WL+L′ = q|WL = v)p(WL = v|W0 = q)

5
= p(WL′ = q|W0 = v)p(WL = v|W0 = q)

In step 2, the v-independent denominator is dropped without
altering ranking. In step 4, given WL, WL+L′ is conditionally
independent of W0 in a Markovian walk. In step 5, a shift in
time by −L does not affect the transition probability.

In particular, p(WL = v|W0 = q) is the F-Rank (Eq. 1), i.e.,
the reachability from q to v. Similarly, p(WL′ = q|W0 = v)
is the reachability from v to q, which we call T-Rank (rank
by reachability to query), denoted t(q, v). Hence,

r(q, v) ∝ f(q, v)t(q, v) (7)

While F-Rank can be computed iteratively (see Eq. 5), T-
Rank can be computed in a symmetric way, where Out(v) is
the set of v’s out-neighbors:

t(i+1)(q, v) = αI(q, v) + (1− α)
∑

v′∈Out(v)

Mvv′t(i)(q, v′). (8)

As a minor caveat, if a directed path exists from q to v but
not from v to q, f(q, v) > 0 but t(q, v) = 0. Hence, it may be
counter-intuitive that r(q, v) = 0 no matter how large f(q, v)
is. Fortunately, this does not happen on an irreducible (i.e.,
strongly connected) graph. In practice, we can always make a
graph irreducible by adding some dummy edges [18].

IV. ROUNDTRIPRANK+: CUSTOMIZING THE TRADE-OFF

Although RoundTripRank balances importance and speci-
ficity, different tasks often require varying trade-offs, as Sect. I
motivated. To this end, we propose RoundTripRank+.

A. RoundTripRank+ with Hybrid Random Surfers

Recall that we generalize F-Rank by materializing the tele-
portation from v back to q into an actual walk. Symmetrically,
in a round trip we can reduce the actual walk from q to each
v to a teleportation. In other words, the surfer may shortcut

the first L steps by teleporting to each v, ignoring importance.
She continues the next L′ steps for specificity.

Now consider some hybrid random surfers Ω consisting
of different-minded surfers in three disjoint groups: (a) Ω11,
seeking targets balanced between importance and specificity,
e.g., ACM GIS for q = “spatio temporal data”; (b) Ω10, seeking
important targets, e.g., VLDB for q; (c) Ω01, seeking specific
targets, e.g., Spatio-Temporal Databases for q.

To reflect their intents, the surfers potentially take variants
of round trips by shortcutting as discussed earlier. Given a
query node q and a target v, the surfers in Ω11 take regular
round trips. However, the surfers in Ω10, after reaching v in
L steps, shortcut the next L′ steps by teleporting to q, i.e.,
∀ω ∈ Ω10, p(W

ω
L+L′ = q|Wω

L = v) = 1 where {Wω
` : ` ≥ 0}

represents the sequence of nodes visited by ω. Likewise, the
surfers in Ω01 shortcut the first L steps by teleporting to v,
i.e., ∀ω ∈ Ω01, p(W

ω
L = v|Wω

0 = q) = 1.
Using different compositions of Ω, i.e., different distribu-

tions of the three groups, we can customize the trade-off
between importance and specificity with RoundTripRank+.

Definition 3 (RoundTripRank+): Given hybrid random surfers
Ω, RoundTripRank+ of v for a query node q, denoted rΩ(q, v),
is defined as: given that each random surfer in Ω independently
completes a round trip from q with a common target, the
probability that the common target is v.

rΩ(q, v) , p(x = v|∀ω∈Ω : Wω
0 = Wω

L+L′ = q,Wω
L = x) (9)

We illustrate the customizability of RoundTripRank+ with
some special cases. (a) Ω = Ω11, i.e., Ω10 = Ω01 = ∅.
It reduces to (the non-customizable) RoundTripRank for a
balance between the two senses, since all the surfers only walk
in regular round trips. (b) Ω = Ω10 reduces to F-Rank and
captures only importance, since all the surfers teleport back
to q from v. (c) Likewise, Ω = Ω01 reduces to T-Rank and
captures only specificity.

However, to customize the trade-off we need to adjust
the compositions of Ω, which involves three parameters
|Ω11|, |Ω10|, |Ω01|. To simplify it, we will introduce a com-
putational model with only one parameter.

B. Basic Computational Model for RoundTripRank+

We first rewrite RoundTripRank+ in Eq.9 into an equivalent
form, similar to Proposition 2.

Proposition 3: Given hybrid random surfers Ω consisting of
(Ω11,Ω10,Ω01), the RoundTripRank+ of v for a query node
q can be expressed as follows with rank equivalence:

rΩ(q, v) ∝ f(q, v)|Ω11|+|Ω10| · t(q, v)|Ω11|+|Ω01|. (10)

PROOF (SKETCH): As each surfer walks independently, we
can factor rΩ(q, v) into the product of individual surfers.
Then, for each surfer, apply Proposition 2. Since some surfers
shortcut the round trip, e.g., p(Wω

L+L′ = q|Wω
L = v) = 1 for

ω ∈ Ω10, and similarly for ω ∈ Ω01, we will get Eq. 10.

We can further normalize the exponents in Eq. 10 without
altering ranking, since the power function is monotonic:

rΩ(q, v) ∝
(
f(q, v)|Ω11|+|Ω10| · t(q, v)|Ω11|+|Ω01|

) 1
|Ω|+|Ω11|

= f(q, v)
|Ω11|+|Ω10|
|Ω|+|Ω11| · t(q, v)

|Ω11|+|Ω01|
|Ω|+|Ω11| (11)

Letting β , |Ω11|+|Ω01|
|Ω|+|Ω11| ∈ [0, 1], we can rewrite Eq. 11 below:

rΩ(q, v) ∝ rβ(q, v) = f(q, v)1−β · t(q, v)β (12)

Intuitively, β is the fraction of objectives by all surfers that
are specificity (note that each surfer in Ω11 has two objectives).
We call β the specificity bias—a large β favors specificity
over importance. A unique ranking can be determined by a
given β, which is itself uniquely determinable from any given
hybrid surfers Ω. Hence, we can adjust β directly to customize
the trade-off between importance and specificity. That is, we
compute RoundTripRank+ as rβ(q, v) in Eq.12 for a chosen β.
Choosing β for each ranking task enables a customized trade-
off, which corresponds to, as its physical meaning, adjusting
the composition of hybrid surfers. As special cases, β = 0
(or 1) reduces to F-Rank (or T-Rank) for only importance (or
specificity); β = 0.5 reduces to RoundTripRank.

To find the optimal β for a ranking task, we may use some
development queries, or consult domain experts. Users may
also specify β directly. As a last resort, we can always fall
back to the default β = 0.5, which outperforms the extreme
cases of β = 0 or 1 in our experiments.

V. ONLINE TOP-K PROCESSING

The basic computational models discussed earlier require
computing F-Rank and T-Rank. However, their iterative com-
putation in Eq. 5 and 8 is not scalable, as it involves multiple
passes of the entire graph for each query.

In many applications, users only need to quickly get a
small number of top results, which could be a close approx-
imation. Hence, we propose an online approximate top-K
method 2SBound, followed by a distributed solution to handle
larger graphs. Our discussion only covers RoundTripRank, but
extending to RoundTripRank+ is straightforward.

A. Approximate Top-K Processing: 2SBound

We propose Two-Stage Bounding, or 2SBound, for online
top-K processing. As its backbone, we adopt the standard
branch-and-bound expansion on graphs (e.g., [14]). However,
its realization for RoundTripRank still requires significant in-
novations, hinging on our original basic computational model
and two-stage bounds updating framework.

We outline 2SBound in Algorithm 1. Given a query node
q, we maintain a neighborhood S, which is a subset of the
nodes: S ⊆ V . We refer to those nodes currently in S as
seen nodes, and those outside S as unseen nodes. We also
maintain a set of bounds ∆ for RoundTripRank: (a) each seen
node is sandwiched by an upper bound r̂(q, v) and a lower
bound ř(q, v), i.e., ř(q, v) ≤ r(q, v) ≤ r̂(q, v), ∀v ∈ S; (b) all
unseen nodes have a common unseen upper bound r̂(q), i.e.,
r(q, v) ≤ r̂(q), ∀v /∈ S. Starting with an empty neighborhood

S, we repeatedly expand S and update the bounds ∆. After
each expansion and updating, we obtain a candidate top K
ranking TK according to the lower bounds ř(q, ∗). The process
stops if TK satisfy the top-K conditions (see Sect. V-A1).

Lastly, to concretize the algorithm for RoundTripRank, we
must further solve the core problem of bounds updating, which
relies on our bounds decomposition (see Sect. V-A2) and two-
stage bounds updating framework (see Sect. V-A3).

Algorithm 1: Two-Stage Bounding (2SBound)
Input: graph G; query node q; number of desired results K
Output: top-K ranking TK of nodes v on G by r(q, v)

1 Neighborhood S ← ∅;
2 repeat
3 Two-stage bounds updating framework: // Sect. V-A3
4 Stage I: Expand S and initialize bounds ∆;
5 Stage II: Iteratively refine ∆ over S;
6 TK ← current top-K by lower bounds;
7 until TK satisfies top-K conditions; // Sect. V-A1
8 return TK .

1) Top-K Conditions

After each neighborhood expansion and updating, we try
to decide the top-K nodes if |S| ≥ K. The nodes in S are
sorted as v1, . . . , v|S| such that ř(q, v1) ≥ . . . ≥ ř(q, v|S|).
TK = 〈v1, . . . , vK〉 is a candidate top-K ranking, which will
be further judged by two conditions below, assuming ε = 0
for the moment. First, Eq. 13 ensures that TK contains correct
top K nodes (in no particular order), since their lower bounds
are no less than the largest upper bound of all other nodes.
Second, Eq. 14 ensures that TK is ordered correctly.

ř(q, vK) > max
{
r̂(q, vK+1), . . . , r̂(q, v|S|), r̂(q)

}
− ε (13)

ř(q, vi) > r̂(q, vi+1)− ε, ∀i ∈ {1, . . . ,K − 1} (14)

In many applications, it is desirable to speed up the compu-
tation by slightly sacrificing ranking quality. Hence, we relax
the conditions in Eq. 13–14 with a positive slack parameter
ε. Accordingly, we obtain an ε-approximate top-K ranking,
which (a) does not miss any node whose score exceeds vK’s
by at least ε; (b) does not swap the order of two nodes if their
scores differ by at least ε.

2) Bounds Decomposition

Our computational model (Eq.7) implies that the bounds for
RoundTripRank can be computed based on the bounds for F-
Rank and T-Rank. Thus, we maintain two neighborhoods: the
f -neighborhood Sf for F-Rank, and the t-neighborhood St for
T-Rank. In general Sf 6= St, because their expansions differ
as we shall see. We ultimately define the r-neighborhood S
for RoundTripRank using Sf and St.

Specifically, ∀v ∈ Sf , let f̂(q, v) and f̌(q, v) denote the
upper and lower bounds for F-Rank. Similarly, ∀v ∈ St, let
t̂(q, v) and ť(q, v) denote the upper and lower bounds for T-
Rank. By defining the r-neighborhood as the set of nodes
common in both the f - and t-neighborhoods, i.e., S = Sf∩St,
we can compute the bounds for RoundTripRank, ∀v ∈ S:

ř(q, v) = f̌(q, v)ť(q, v); r̂(q, v) = f̂(q, v)t̂(q, v) (15)

Additionally, to compute the unseen upper bound r̂(q), we
also maintain its counterparts f̂(q) and t̂(q) for F-Rank and T-
Rank, respectively. However, r̂(q) does not simply decompose
as f̂(q)t̂(q). Since S = Sf ∩ St, some unseen nodes by S
may be “seen” by either Sf or St, but not both. These nodes
v ∈ Sf\S or v ∈ St\S have individual upper bound f̂(q, v)
or t̂(q, v). Hence, we can compute r̂(q) as follows:

r̂(q) = max

{
f̂(q)t̂(q), max

v∈Sf\S
f̂(q, v)t̂(q), max

v∈St\S
f̂(q)t̂(q, v)

}
(16)

3) Two-Stage Bounds Updating Framework

As just explained, to obtain the bounds for RoundTripRank,
we only need those for F-Rank and T-Rank. Given the graph
and the current neighborhood (Sf or St) as input, we propose
a novel two-stage framework common to both Sf and St,
although their realizations differ. In particular, we update
bounds for each seen node by considering not only the node
itself for initialization (Stage I), but also its relationship with
its neighbors for iterative refinement (Stage II).

To simplify notations in the common framework, let Sx
denote either the f - or t-neighborhood, i.e., x refers to either
f or t. Likewise, x̌(·) and x̂(·) denote the lower and upper
bounds for either F-Rank or T-Rank.
Stage I: Expansion and initialization. Expand the given
neighborhood Sx. Assign lower and upper bounds x̌(0)(q, v)
and x̂(0)(q, v) for each v ∈ Sx, and the unseen upper bound
x̂(0)(q) for all nodes v /∈ Sx. We are essentially initializing
the bounds—as the superscript (0) indicates—for each node
individually, before further refining them iteratively using
neighbors in Stage II. To compute such initial values, we can
leverage previous works (e.g., [19], [16], [20]).
Stage II: Iterative refinement. We further improve the initial
bounds from Stage I by exploiting the relationships between
nodes. As implied by the naı̈ve computation in Eq.5 (or Eq.8),
the F-Rank (or T-Rank) of a node v can be expressed in terms
of its in- (or out-) neighbors’ values. Since Eq. 5 and 8 are
monotonic additions, by using the lower or upper bound of
each summand that involves a neighbor v′ of v, we will get
a lower or upper bound on the overall sum for v. Hence, we
can iteratively update the bounds of each seen node using its
neighbors. To tighten the bounds, we only decrease an upper
bound or increase a lower bound in any update. Subsequently,
the initial bounds from Stage I can be iteratively refined
over the neighborhood Sx: in iteration i + 1 (where i = 0
corresponds to the initialization in Stage I), ∀v ∈ Sx,

x̌(i+1)(q, v) = max


x̌(i)(q, v),

αI(q, v) + (1− α)
∑

v′∈Nx(v)

Xvv′ x̌(i)(q, v′)

 (17)

x̂(i+1)(q, v) = min


x̂(i)(q, v),

αI(q, v) + (1− α)
∑

v′∈Nx(v)

Xvv′ x̂(i)(q, v′)

 (18)

where Nx(v) = In(v), Xvv′ = Mv′v for F-Rank, and Nx(v) =
Out(v), Xvv′ = Mvv′ for T-Rank. If a neighbor v′ of v is
unseen, we simply use a lower bound zero and the unseen
upper bound for it.

We terminate the iterative refinement when the bounds
converge, which is guaranteed because {x̌(i)(q, v)}∞i=0 and
{x̂(i)(q, v)}∞i=0 are bounded monotone sequences due to the
max{·} and min{·} functions, respectively.

In general, improving the bounds even for a single node
may further improve the bounds for its neighbors, and this
effect propagates recursively on the neighborhood. As the
neighborhood is often far smaller than the entire graph, it is
feasible to iteratively refine the bounds over it.

Next, we discuss the specific realization of the two-stage
framework for F-Rank and T-Rank, respectively.
Realization of F-Rank. As F-Rank is equivalent to PPR (see
Proposition 1), we can leverage an existing work on PPR
for Stage I, namely the Bookmark-Coloring Algorithm (BCA)
[19]. BCA iteratively spreads the “residual” starting from the
query node over the graph to form the PPR at each node. It
maintains two values for each node v ∈ V w.r.t. a query node
q: the current estimated PPR score ρ(q, v) and the residual
µ(q, v). Initially, ∀v, ρ(q, v) = 0. Moreover, there is initially
a total of one unit residual, all of which is concentrated at q,
i.e., µ(q, q) = 1 and ∀v 6= q, µ(q, v) = 0. Subsequently, BCA
picks the node vmax with the largest residual currently, and
performs BCA processing on vmax:
• α portion of its residual adds to its current estimated PPR,

i.e., ρ(q, vmax)← ρ(q, vmax) + α · µ(q, vmax);
• the remaining 1−α portion spreads to its out-neighbors, i.e.,
∀v′∈Out(vmax), µ(q, v′)←µ(q, v′)+(1−α)µ(q, vmax)Mvv′ ;

• reset its residual to zero: µ(q, vmax)← 0.
This procedure—picking vmax and apply BCA processing—

is repeated until the total amount of remaining residual be-
comes zero, which occurs asymptotically. We refer readers to
the original work [19] for full details.

Stage I. We concretize the f -neighborhood as the set of
nodes currently with non-zero estimated PPR in BCA: Sf ,
{v ∈ V : ρ(q, v) > 0}. The precondition of BCA dictates
ρ(q, v) = 0,∀v ∈ V , which results in an initially empty Sf .

As the first step in Stage I, to expand Sf , instead of picking
one node vmax with maximal residual as in the original BCA,
we generally pick m nodes by some strategy (which we will
discuss next), and apply BCA processing to each of them.
After the processing, their ρ(q, ∗) become non-zero, and thus
they are included into Sf .

The question now is how to select the m nodes. First,
to tighten the bounds quickly, we need to reduce the total
residual (as we will see soon in Eq. 19–21). Thus, it is
preferred to select a node v with a large residual. Second,
it is better to select nodes with few out-neighbors, since the
BCA processing time of a node is linear in its number of out-
neighbors. Factoring in both criteria, we define the benefit of
a node v as µ(q, v)/|Out(v)|. Subsequently, we pick up to m
nodes with the largest non-zero benefits. Note that the first
expansion will only bring in the query node q, since it is the
only node with non-zero residual initially.

In the above expansion model, m controls the granularity of
the expansion—a small m may result in too frequent bounds

updating, while a large m may miss the opportunity to stop
early. We use m = 100 based on some trial queries. The
performance is not sensitive to small changes in m.

As the second step in Stage I, we initialize the bounds
f̌ (0)(q, v) and f̂ (0)(q, v) for each seen node v ∈ Sf , as well as
the unseen upper bound f̂ (0)(q). The initializations are based
on the current ρ(q, ∗) and µ(q, ∗) in BCA, as below.

Proposition 4: Given the current µ(q, ∗) and ρ(q, ∗) as main-
tained by BCA, the following bounds hold:

f̂ (0)(q) =
α

2− α
max
u∈V

µ(q, u) +
1− α
2− α

∑
u∈V

µ(q, u) (19)

f̌ (0)(q, v) = ρ(q, v),∀v ∈ Sf (20)

f̂ (0)(q, v) = ρ(q, v) + f̂ (0)(q),∀v ∈ Sf (21)

PROOF (SKETCH): It is already known that Eq. 20 holds [19].
Thus, we only need to prove Eq. 19, upon which Eq. 21 can
be built. For any node v, consider an upper bound U for the
sum of residual that is already at v or may spread to v for
the first time. An α portion of U adds to ρ(q, v), while the
remaining (1−α) spreads to v’s out-neighbors. Then, the same
mechanism repeats—residual spread to neighbors may come
back to v for a second or third time, adding α portion to
ρ(q, v) each time, totaling to U · [α+(1−α)2α+(1−α)4α+
. . .] = U/(2− α). Thus, U/(2− α) is the maximum residual
that may add to ρ(q, v) for any node v, i.e., an unseen upper
bound. It can be simplified to Eq. 19 since U ≤ µ(q, v) +
(1−α)

∑
u6=v µ(q, u). Next, Eq. 21 can be easily obtained by

adding a seen node v’s current ρ(q, v) to f̂ (0)(q).

Note that we consider the residual that may repeatedly
spread to and from a node, and thus obtain better upper bounds
than the work by Gupta et al. [16]. The latter only accounts
for residual that may spread to a node for the first time.

Stage II. For each seen node, the iterative refinement of its
bounds (Eq. 17 and 18) is applied as is.
Realization of T-Rank. Our realization of Stage I and II
hinges on the concept of border nodes [14], [20]. A border
node of the t-neighborhood St has at least one of its in-
neighbors outside St. Thus, to reach q from any unseen node
v /∈ St, we must first pass through a border node. Let u be
a border node with the largest upper bound. Then, the unseen
upper bound, which is the largest probability of reaching q
from v /∈ St, can be achieved by reaching u with probability
1 in one step, and then continuing from u to q:

t̂(q) = (1− α) max
u∈∂(st)

t̂(q, u), (22)

where ∂(st) is the set of border nodes of St. Note that reaching
u in one step dampens the probability by a factor 1 − α due
to the geometrically distributed walk length.

Stage I. In the first expansion, let St = {q} with ť(0)(q, q) =
α due to Eq. 8, and t̂(0)(q, q) = 1. The unseen upper bound is
t̂(0)(q) = 1− α due to Eq. 22.

In subsequent expansions, we aim to reduce the unseen
upper bound, which will further improve the bounds of the
seen nodes owing to the propagating effect of the iterative

refinement in Stage II. We pick up to m border nodes with
the largest upper bounds, and bring all of their in-neighbors
into St. This makes these m nodes no longer border nodes, and
thus reduces the unseen upper bound (which is based on the
border node with the largest upper bound, see Eq. 22). As we
discussed for F-Rank, m controls the granularity of expansion,
and it can be set empirically (m = 5 in our experiments).

To initialize the bounds for nodes already in St before this
expansion, we use their bounds from the last expansion. For
each newly included node, we use a lower bound of zero, and
the unseen upper bound from the last expansion. Finally, we
initialize the current unseen upper bound using Eq. 22.

Stage II. We iteratively refine the bounds for each seen node
as in Eq. 17–18. In addition, based on Eq. 22 we can also
refine the unseen upper bound in each iteration: t̂(i)(q) = (1−
α) maxu∈∂(St) t̂

(i)(q, u).

B. Distributed Solution for 2SBound
We have so far assumed that the entire graph resides in the

main memory of a single machine. To scale 2SBound to very
large graphs, we design a solution based on the observation
of the active set and the technique of data striping.

1) Active Set
For any query, 2SBound only needs to maintain a subset

of the nodes and edges in G rather than the entire G. As our
realization is decoupled into F-Rank and T-Rank, we maintain
the nodes in their respective neighborhood, and the set of
edges for these nodes. We call the nodes and edges to be
maintained the active nodes and active edges respectively,
which collectively form the active set.
Memory requirement. The active set is the minimum working
set that must reside in the main memory. Otherwise, frequent
page swappings occur during iterative refinement. Fortunately,
in terms of the absolute space cost, the active set is usually a
minute subset of the entire graph. In terms of the scalability,
as the graph grows, the active set scales at a slower rate, as our
analysis below and the experiments show. Thus, it is practical
to fit the active set in the main memory.
Orders of growth. Assume a graph G with |V | nodes and
average degree D̄. As observed by Leskovec et al. [21], the
average degree can be modeled by power laws: D̄ ≈ c|V |a−1,
where c and a are graph-dependent constants and 1 < a < 2
on most real-world graphs. Hence, G incurs O(|V |+ |V |D̄) =
O(c|V |a) space, where |V |D̄ is the number of edges.

Next, we examine the active set. In each neighborhood
expansion, we pick m nodes and bring their neighbors into
the active set. After n expansions we have O(nmD̄) active
nodes. Since m is a constant and we assume n is also a
constant for a given slack ε and graph G, the number of active
nodes is O(D̄). Hence, the active set incurs O(D̄ + D̄2) =
O(c2|V |2(a−1)) space. To compare the orders of growth of the
active set and the graph, we find:

lim
|V |→∞

c2|V |2(a−1)

c|V |a
= lim
|V |→∞

c|V |a−2 = 0, ∀a ∈ (1, 2), (23)

implying that the active set grows slower than the graph.

2) Distributed Architecture

Our architecture includes one active processor, which is
connected to multiple graph processors over a network.
Active processor (AP). Starting with the query node, AP
expands the neighborhoods by picking some nodes as in
Sect. V-A, whose neighbors are subsequently brought into
the active set. But instead of pulling them directly from the
graph (which is not in its main memory), AP queries the
graph processors over a network, which are responsible for
identifying and sending back the new active nodes and edges.
Subsequently, AP incrementally assembles the active set from
the responses, updates the bounds, and proceeds to the next
expansion until the top K nodes can be determined.
Graph processors (GP). When the graph does not fit into the
main memory of a single machine, we rely on data striping
[22], a technique to segment data over multiple storage units.
In our case, the graph is segmented across multiple GPs—each
GP stores a subset of the nodes and edges in its main memory.
In particular, we assign nodes (along with their edges) in the
graph to GPs in a round-robin fashion.

Such striping presents several benefits. First, it aggregates
the fast storage (main memory) of GPs to handle large graphs.
Second, it enables parallel access to different parts of the
graph. Third, apart from segmenting the graph which involves
minimal work, there is no offline precomputation like the
original 2SBound. In general, using a cluster of commodity
computers is more flexible, cost effective, and reliable (if with
redundancy) than using a single powerful machine.

Upon an expansion request from AP during query pro-
cessing, each GP identifies the requested active nodes and
edges stored in it, and sends them back to AP. AP can then
incrementally assemble the active set, as described earlier.

VI. EXPERIMENTS

We aim to evaluate the effectiveness of RoundTripRank
and RoundTripRank+, as well as the efficiency of the top-K
algorithm 2SBound, on the two real-world datasets below.
Bibliographic network (BibNet). There are 2 million nodes
(papers, authors, terms, venues) and 25 million edges (paper-
paper, paper-term, paper-venue, paper-author), extracted from
DBLP and Citeseer. The paper-paper citation edges are di-
rected, while the others are undirected. The edge weights are
set following a previous work [14].
Query log (QLog). We use a search engine query log [12].
After removing search phrases and clicked URLs that only
appear once, we construct a graph with 2 million nodes and 4
million edges—the search phrases and clicked URLs are the
nodes, where an undirected edge is drawn between them if
the former has a click landing on the latter. The count of such
clicks is used as the edge weight.

A. Effectiveness of RoundTripRank and RoundTripRank+

We evaluate the ranking of the results to validate our
hypotheses. First, most ranking scenarios require some trade-
off between importance and specificity, as RoundTripRank

pursues. Second, the optimal trade-off varies from task to task,
depending on the user preference or task nature. Hence, an
effective proximity measure should cater to different tasks in
a flexible manner, as RoundTripRank+ pursues.

Hence, after describing the experimental settings, we first
compare RoundTripRank with a few mono-sensed baselines to
demonstrate the need for the dual senses. Next, we show that
task-oriented customization is indeed beneficial, and compare
RoundTripRank+ with various dual-sensed baselines.

Subgraphs. As we evaluate the effectiveness rather than
efficiency here, we use the iterative method in Eq. 5 and 8
for the exact ranking to eliminate the effect of approximation.
However, some baselines (e.g., SimRank and TCommute) are
very expensive to compute exactly on the full graphs. Thus,
as previous works [23], [24], we use smaller subgraphs for
the effectiveness evaluation. The full graphs will be used in
Sect. VI-B for the efficiency study.

For BibNet, we focus on 28 hand-picked major venues in
four related areas (DB/DM/IR/AI), resulting in a subgraph of
20545 nodes and 252272 edges. For QLog, we start with 200
random nodes, and expand to their neighbors for three hops,
resulting in a subgraph of 23665 nodes and 74504 edges.

Experiment methodology. In our experiments, we reserve
some nodes with known association to the query, and then
test whether a proximity measure can rank these nodes highly
without the knowledge of the association. In other words,
such reserved nodes form the ground truth, which we aim to
re-discover. This methodology makes the ground truth easily
available for large-scale evaluation, which is often used as a
benchmark test (e.g., [14]) for graph proximity. If a measure
performs well on such ground truths, presumably it can also
rank other matching results highly.

Thus, we use the ranking scenarios in Task 1–4 below,
which are adapted from Task A–D in Sect. I, such that the
ground truth nodes for each query are automatically known.
To test the ability to recover the ground truth, we remove all
direct edges between the query and ground truth nodes. As
these tasks mimic the different trade-offs between importance
and specificity (which we will analyze in Sect. VI-A2), the
need for a customizable trade-off can be justified.

• Task 1 (Author) / Task 2 (Venue): On BibNet, given a paper
as the query node, find all its authors/venue.

• Task 3 (Relevant URL): On QLog, given a search phrase as
the query node, find a randomly chosen clicked URL.

• Task 4 (Equivalent search): On QLog, given a search phrase
as the query node, find its equivalent phrases. We deem two
phrases equivalent if they contain the exact same non-stop
words (e.g., “the apple ipod” and “ipod of apple”).

Evaluation. For each task, we randomly sample 1000 nodes
as the test queries. To assess the ranking for a query, we filter
out the query node itself and nodes not of the target type. We
then evaluate the filtered ranking against the ground truth using
NDCG@K with ungraded judgments. Statistical significance
is verified using two-tail paired t-tests.

Task 1 Task 2 Task 3 Task 4 Average
K = 5 K = 10 K = 20 K = 5 K = 10 K = 20 K = 5 K = 10 K = 20 K = 5 K = 10 K = 20 K = 5 K = 10 K = 20

RoundTripRank 0.3798 0.4189 0.4534 0.7573 0.7853 0.7974 0.3750 0.4112 0.4357 0.4876 0.5378 0.5763 0.4999 0.5383 0.5657

F-Rank/PPR 0.3276 0.3649 0.3985 0.7498 0.7835 0.7940 0.3694 0.4079 0.4348 0.3777 0.4312 0.4757 0.4561 0.4969 0.5257

T-Rank 0.3041 0.3425 0.3817 0.6864 0.7306 0.7436 0.1957 0.2312 0.2701 0.4523 0.5093 0.5527 0.4096 0.4534 0.4870

SimRank 0.1981 0.2236 0.2512 0.5747 0.6197 0.6310 0.0988 0.1214 0.1451 0.4365 0.4953 0.5404 0.3270 0.3650 0.3919

AdamicAdar 0.1689 0.1765 0.1831 0.2133 0.2425 0.3028 0.0000 0.0000 0.0006 0.4192 0.4713 0.5185 0.2004 0.2226 0.2512

Fig. 5. NDCG@K of RoundTripRank and mono-sensed baselines. The best in each column is bolded, and the runner-up is underlined.

(a) F-Rank/PPR (b) T-Rank (c) RoundTripRank
Comp. Res. Repository Spatio-Temporal DBs Spatio-Temporal DBs

SIGMOD Temporal DBs, Dagstuhl Temp. Repr. & Reasoning
VLDB Spatio-Temporal Data Mining GeoInformatica
ICDE Temporal Aspects in Info. Sys. ACM GIS

Temp. Repr. & Reasoning Ana. & Retr. in Video Streams VLDB

Fig. 6. Ranking venues for “spatio temporal data.”

(a) F-Rank/PPR (b) T-Rank (c) RoundTripRank
World Conf. on WWW Wkshp. on Semantic Web Intl. Semantic Web Conf.
IEEE Intelligent Sys. Trends in Web Sci. Intl. Conf. on Web Services

Intl. Conf. on Web Services Semantic Grid IEEE Intelligent Sys.
Commun. ACM J. Web Engineering J. Web Semantics

Comp. Res. Repository Semantic Tech. Euro. Semantic Web Conf.

Fig. 7. Ranking venues for “semantic web.”

1) RoundTripRank and Mono-Sensed Baselines

As the first dimension, we validate that dual-sensed
RoundTripRank outperforms mono-sensed baselines.
Quantitative results. We set α = 0.25 for RoundTripRank,
i.e., L,L′∼Geo(0.25). Its ranking is stable for a wide range of
α between 0.1 and 0.5. As baselines, we use importance-based
F-Rank/PPR and specificity-based T-Rank with the same α.
We also use SimRank [8] with C = 0.85 (as recommended,
which we find robust) and AdamicAdar [7], both of which
capture some form of “closeness” as Sect. II explained.

As reported in Fig. 5, RoundTripRank consistently outper-
forms all the baselines across all four tasks. On average, it im-
proves NDCG@5 over the runner-up (F-Rank/PPR) by 10%,
with statistical significance (p < 0.01). Hence, some balance
between importance and specificity is indeed necessary.
Illustrative results. We illustrate the top 5 results of two
queries on the full BibNet graph. Given a query consisting
of some term nodes, its matching venues are ranked. It is
relatively objective to judge the importance and specificity of
venues as compared to other types of nodes.

We show the results of the first query, “spatio temporal data”
(three term nodes), in Fig. 6. F-Rank finds important venues in
the database area. However, most of them are too general, and
will be ranked highly for any data-centric topic. In contrast,
T-Rank favors venues specifically tailored to the topic, but
they are less well-known. Lastly, RoundTripRank’s ranking is
comprehensive and balanced, with not only important (e.g.,
VLDB) or specific venues (e.g., Spatio-Temporal DBs), but also
venues that are themselves a balance of the two senses (e.g.,
ACM GIS). Similar observations can be made on Fig. 7 for the
second query “semantic web”.

2) RoundTripRank+ and Dual-Sensed Baselines

As the second dimension, we investigate the benefit of a cus-
tomizable trade-off between importance and specificity. In par-
ticular, we study the effect of varying β on RoundTripRank+,
and compare it to various dual-sensed baselines.

0.25

0.30

0.35

0.40

0.0 0.5 1.0

N
D

C
G

 @
 5

(a) Task 1

0.25

0.30

0.35

0.40

0.0 0.5 1.0

(c) Task 3

0.35

0.40

0.45

0.50

0.0 0.5 1.0

(d) Task 4

0.65

0.70

0.75

0.80

0.0 0.5 1.0

(b) Task 2

Specificity bias β

Fig. 8. Effect of the specificity bias.

Effect of specificity bias β. Recall that β ∈ [0, 1] is used to
customize the trade-off between importance and specificity in
RoundTripRank+. Fig. 8 shows the performance when varying
β between 0 and 1. We only present NDCG@5, as the same
trends are observed @10 and @20.

We first observe that extreme β values (close to 0 or 1) result
in poor performance. When β = 0 (or 1), RoundTripRank+
only captures importance (or specificity). This reconfirms our
findings in Sect. VI-A1 that we need both senses.

Second, different tasks have varying optimal values β∗,
naturally reflecting the different trade-offs required in the
tasks. In Task 1 (Author), β∗ ≈ 0.5, as paper authors can be
either important (e.g., the faculty) or specific (e.g., the student).
In Task 2 (Venue), β∗ < 0.5, as paper submissions tend to
favor important venues. In Task 3 (Relevant URL), β∗ < 0.5,
as users are often biased to click on important and well-known
sites. In Task 4 (Equivalent search), β∗ > 0.5, as equivalent
search phrases ideally refer to the exact same concept, and thus
are inherently specific to each other. The varying β∗ values
imply no “one-size-fits-all” solution, and thus a customizable
trade-off is beneficial.

For a given task at hand, the optimal β can be tuned using
some development queries, or predetermined by identifying
the underlying objective as we analyzed above, or directly
specified by users to reflect their needs. If such options are
not available, we can use the default β = 0.5, which still
fares better than β → 0 or 1 as just observed.
Comparing to existing dual-sensed baselines. We set α =
0.25 for RoundTripRank+ as before. For each task, to choose
the optimal β, we use 1000 randomly sampled development
queries that do not overlap with the test queries.

We use existing dual-sensed baselines, namely truncated
commute time or TCommute [11], [14] with T = 10 (as
recommended, which we find robust), and ObjSqrtInv [5] with
d = 0.25 (like α, the ranking is stable for a wide range
of d). Additionally, as our computational model is actually a
geometric mean of F-Rank and T-Rank, we also compare with
their harmonic [12], [13] and arithmetic means. These existing
works [5], [11], [12], [13] neither recognize the benefit of, nor
implement, customizable trade-offs for different tasks.

Task 1 Task 2 Task 3 Task 4 Average
K = 5 K = 10 K = 20 K = 5 K = 10 K = 20 K = 5 K = 10 K = 20 K = 5 K = 10 K = 20 K = 5 K = 10 K = 20

RoundTripRank+ 0.3798 0.4189 0.4534 0.7630 0.7945 0.8045 0.3856 0.4188 0.4446 0.5035 0.5560 0.5944 0.5080 0.5470 0.5742

TCommute 0.3381 0.3800 0.4151 0.7514 0.7860 0.7965 0.3718 0.4104 0.4350 0.4322 0.4873 0.5297 0.4734 0.5159 0.5441

ObjSqrtInv 0.3308 0.3694 0.4070 0.7556 0.7849 0.7963 0.3589 0.3979 0.4236 0.4045 0.4590 0.5016 0.4624 0.5028 0.5321

Harmonic 0.3155 0.3535 0.3926 0.7000 0.7426 0.7546 0.3012 0.3384 0.3683 0.4931 0.5439 0.5833 0.4524 0.4946 0.5247

Arithmetic 0.3364 0.3756 0.4114 0.7499 0.7841 0.7948 0.3693 0.4104 0.4320 0.4211 0.4799 0.5223 0.4692 0.5125 0.5401

Fig. 9. NDCG@K of RoundTripRank+ and existing dual-sensed baselines. The best in each column is bolded, and the runner-up is underlined.

Task 1 Task 2 Task 3 Task 4 Average
RoundTripRank+ 0.3798 0.7630 0.3856 0.5035 0.5080

TCommute+ 0.3614 0.7514 0.3770 0.4603 0.4876

ObjSqrtInv+ 0.3228 0.7560 0.3691 0.4478 0.4740

Harmonic+ 0.3262 0.7450 0.3602 0.4960 0.4818

Arithmetic+ 0.3560 0.7508 0.3728 0.4576 0.4843

Fig. 10. NDCG@5 of RoundTripRank+ and customized dual-sensed base-
lines. The best in each column is bolded, and the runner-up is underlined.

As reported in Fig. 9, RoundTripRank+ consistently out-
performs all the baselines in all four tasks. On average, it
improves NDCG@5 by 7% over the runner-up (TCommute)
with statistical significance (p < 0.01). The results clearly
highlight the advantage of flexible trade-offs across tasks.
Comparison to customized dual-sensed baselines. Recall
that existing dual-sensed baselines [5], [11], [12], [13] apply
a fixed trade-off across tasks. To give them the benefit of a
flexible trade-off, we customize each of them with a tunable
β ∈ [0, 1], putting weights 1 − β and β on their two sub-
measures, respectively. To choose the optimal β for each task,
we use the same development queries of RoundTripRank+.
We stress that the customizations are implemented by us, and
existing works are unaware of such a need.

Nonetheless, RoundTripRank+ still performs the best con-
sistently, as summarized in Fig. 10 where each customized
baseline is marked with “+”. For brevity only NDCG@5 is
shown, but the conclusion is similar @10 or @20. On average,
RoundTripRank+ improves over the runner-up (TCommute)
by more than 4%, with statistical significance (p < 0.01).
In addition, the baselines perform unevenly across tasks—the
runner-up varies from task to task, providing no evidence to
argue one or another even empirically.

We attribute the better performance of RoundTripRank+
to the coherent integration of importance and specificity in
a round trip. In contrast, most baselines combine their sub-
measures for the two senses in a somehow crude manner.
For example, the arithmetic mean is simply the expectation
of two independent trials, one for each sense, lacking co-
herence in their integration. Others such as TCommute, as
Sect. II discussed, lack an interpretation in terms of the two
senses. In particular, the semantics of the two sub-measures in
TCommute has not been thoroughly studied. That being said,
the connections to importance and specificity may still exist,
but possibly in a weaker form.

B. Efficiency of 2SBound

We evaluate the approximate top-K algorithm 2SBound
for RoundTripRank on the two full graphs. In particular, we
examine its query time and approximation quality on a single
machine, and its scalability on our distributed architecture. In
all the experiments we use K = 10.

0.6

0.7

0.8

0.9

1.0

0.01 0.02 0.03
 0

 500

 1000

 1500

 2000

Q
u
a
lit

y
 m

e
tr

ic

T
im

e
 (

m
s
)

Slack ε

(b) Approximation quality

NDCG
precision

Kendall’s tau
time10

2

10
3

10
4

10
5

0.01 0.02 0.03

T
im

e
 (

m
s
)

Slack ε

(a) Query processing time

Naive
G+S

Sarkar

Gupta
2SBound

Fig. 11. Time and quality of 2SBound on BibNet under varying slacks.

1) Query Time and Approximation Quality

As assumed in Sect. V-A, we load the entire graph into the
main memory of a single computer, which has 8GB capacity.
From each graph, we randomly sample 1000 nodes as queries.
Due to space limit, we only report the results on BibNet, as
we make similar observations on both graphs.

Query time. We compare the query time of 2SBound with that
of a naı̈ve baseline and three weaker schemes of 2SBound:

• Naive: The naı̈ve iterative method (Eq. 5 and 8).
• G+S: A weaker scheme of 2SBound. We apply the work

by Gupta et al. [16] to update the bounds for F-Rank, and
the work by Sarkar et al. [20] for T-Rank, which are their
respective state-of-the-art algorithms.

• Gupta: Same as G+S, but using our two-stage framework
for T-Rank, while still using Gupta’s method for F-Rank.

• Sarkar: Same as G+S, but using our two-stage framework
for F-Rank, while still using Sarkar’s method for T-Rank.

We show their average query time in Fig.11(a). As expected,
a large slack ε greatly reduces the query time (except Naive
which does not use ε). Notably, 2SBound is two orders of
magnitude faster than Naive, and 2–10 times faster than the
others. Its query time is also stable across queries, e.g., its
99% confidence interval is 1255± 154ms at ε = 0.01.

Approximation quality. To evaluate the approximation qual-
ity, we compare 2SBound’s ranking with the exact ranking
using NDCG, precision and Kendall’s tau [15].

We present the approximation quality of 2SBound in
Fig. 11(b), along with its query time for reference. While
query processing speeds up five-fold as the slack increases, the
quality drops slightly. Nevertheless, all metrics are still above
0.9 when the time is only 300ms. Most drops are observed in
precision and Kendall’s tau, which penalize mistakes equally
regardless of their ranks. In contrast, NDCG has a smaller
drop, meaning that mistakes are rare at high ranks.

In summary, 2SBound enables real-time query processing
with a close approximation to the exact ranking.

(a) BibNet snapshots

Time- Snapshot Active set Query
stamp size/MB size/MB time/ms
1994 93 1.2±.1 728± 48

1998 165 1.5±.1 842± 53

2002 284 1.8±.1 1031± 66

2006 510 2.3±.2 1311±101

2010 692 2.4±.2 1415±102

(b) QLog snapshots

Time- Snapshot Active set Query
stamp size/MB size/MB time/ms
5/6 264 .041±.001 51±1

5/12 495 .045±.002 55±2

5/18 713 .049±.002 57±2

5/24 905 .053±.002 61±3

5/31 1114 .054±.002 66±3

Fig. 12. Active set size and query time on growing graphs.

2) Scalability

We study the scale-up of the distributed solution for
2SBound. The goal is scaling to larger graphs with minimal
increase in the active set and query time.

As both BibNet and QLog grow over time, we model their
growth by taking five snapshots at different timestamps—every
four years on BibNet from 1994 to 2010, and about every
six days on QLog during May 2006. To simulate our AP/GP
architecture, for each graph, we assume its i-th snapshot
requires i GPs, ∀i ∈ {1, . . . , 5}. Note that all snapshots are
cumulative, and thus they are larger at later timestamps. On
each snapshot, we randomly sample 1000 nodes as queries,
and set a slack ε = 0.01.
Efficiency. We report the 99% confidence intervals of the
active set size and the query time in Fig. 12. Recall that the
active set is the minimum working set on AP.

We first observe that the active set remains small even on
the largest snapshot. For instance, the active set of the 2010
snapshot on BibNet is merely 2.4MB or 0.3% of that snapshot.
Second, active set size and query time are strongly correlated,
since the two-stage bounds updating framework iterates over
the active set. Third, QLog has larger snapshots but smaller
active sets than BibNet. In Sect. V-B, we show that the space
cost of the active set, O(D̄+D̄2), is correlated with the average
degree D̄, which is smaller on QLog.
Rate of growth. We compare the rate of growth of the three
quantities, namely snapshot size, active set size and query
time. For each graph, we normalize the three quantities on all
snapshots by their corresponding values on the first snapshot.
Thus, for each graph, we obtain a rate of growth w.r.t. the first
snapshot for each quantity, shown in Fig. 13.

As Sect. V-B discussed, the active set grows much slower
than the snapshot. In particular, while the snapshot grows by
a factor of 7.4 on BibNet and 4.2 on QLog over the entire
period, the active set only grows by a factor of 1.9 and 1.3,
respectively. Furthermore, query time depends only on the
active set size, and thus has a similar rate of growth. Based
on these trends, we can scale query processing to even larger
graphs with both space and computational efficiency.

VII. CONCLUSION

In this paper, we developed RoundTripRank, a graph-based
proximity that coherently integrates importance and specificity
in a round trip. We further generalized it to RoundTripRank+
using a scheme of hybrid random surfers for a flexible trade-
off between the two senses. Empirically, we showed them to
be effective on two real-world graphs across various ranking

0

2

4

6

8

10

1994 1998 2002 2006 2010

R
a
te

 o
f
g
ro

w
th

Timestamp

(a) BibNet snapshots

snapshot
active set

query time

0

1

2

3

4

5

5/6 5/12 5/18 5/24 5/31

R
a
te

 o
f
g
ro

w
th

Timestamp

(b) QLog snapshots

snapshot
active set

query time

Fig. 13. Rate of growth in snapshot, active set and query time.

tasks. Finally, we proposed a top-K algorithm 2SBound,
enabling online processing with a close approximation.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford Univ., Tech. Rep., 1999.

[2] G. Jeh and J. Widom, “Scaling personalized web search,” in WWW,
2003, pp. 271–279.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “ObjectRank:
Authority-based keyword search in databases,” in VLDB, 2004, pp. 564–
575.

[4] Z. Nie, Y. Zhang, J. Wen, and W. Ma, “Object-level ranking: Bringing
order to web objects,” in WWW, 2005, pp. 567–574.

[5] V. Hristidis, H. Hwang, and Y. Papakonstantinou, “Authority-based
keyword search in databases,” ACM TODS, vol. 33, no. 1, pp. 1–40,
2008.

[6] N. Craswell and M. Szummer, “Random walks on the click graph,” in
SIGIR, 2007, pp. 239–246.

[7] L. Adamic and E. Adar, “Friends and neighbors on the web,” Social
networks, vol. 25, no. 3, pp. 211–230, 2003.

[8] G. Jeh and J. Widom, “SimRank: a measure of structural-context
similarity,” in SIGKDD, 2002, pp. 538–543.

[9] Y. Koren, S. North, and C. Volinsky, “Measuring and extracting prox-
imity in networks,” in SIGKDD, 2006, pp. 245–255.

[10] H. Tong, C. Faloutsos, and Y. Koren, “Fast direction-aware proximity
for graph mining,” in SIGKDD, 2007, pp. 747–756.

[11] P. Sarkar and A. Moore, “A tractable approach to finding closest
truncated-commute-time neighbors in large graphs,” in UAI, 2007, pp.
335–343.

[12] G. Agarwal, G. Kabra, and K. C.-C. Chang, “Towards rich query
interpretation: walking back and forth for mining query templates,” in
WWW, 2010, pp. 1–10.

[13] Y. Fang and K. C.-C. Chang, “Searching patterns for relation extraction
over the web: rediscovering the pattern-relation duality,” in WSDM,
2011, pp. 825–834.

[14] P. Sarkar, A. Moore, and A. Prakash, “Fast incremental proximity search
in large graphs,” in ICML, 2008, pp. 896–903.

[15] S. Chakrabarti, “Dynamic personalized pagerank in entity-relation
graphs,” in WWW, 2007, pp. 571–580.

[16] M. Gupta, A. Pathak, and S. Chakrabarti, “Fast algorithms for top-k
personalized pagerank queries,” in WWW, 2008, pp. 1225–1226.

[17] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling fully
personalized pagerank: Algorithms, lower bounds, and experiments,”
Internet Mathematics, vol. 2, no. 3, pp. 333–358, 2005.

[18] T. Haveliwala, “Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search,” TKDE, vol. 15, no. 4, pp. 784–796, 2003.

[19] P. Berkhin, “Bookmark-coloring algorithm for personalized pagerank
computing,” Internet Mathematics, vol. 3, no. 1, pp. 41–62, 2006.

[20] P. Sarkar and A. Moore, “Fast nearest-neighbor search in disk-resident
graphs,” in SIGKDD, 2010, pp. 513–522.

[21] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densifi-
cation laws, shrinking diameters and possible explanations,” in SIGKDD,
2005, pp. 177–187.

[22] K. Salem and H. Garcia-Molina, “Disk striping,” in ICDE, 1986, pp.
336–342.

[23] Y. Sun, J. Han, X. Yan, P. Yu, and T. Wu, “PathSim: Meta path-
based top-k similarity search in heterogeneous information networks,”
in VLDB, 2011, pp. 992–1003.

[24] Y. Sun, J. Han, J. Gao, and Y. Yu, “iTopicModel: Information network-
integrated topic modeling,” in ICDM, 2009, pp. 493–502.

